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1 Summary

Symplectic structures play an important role in the theory of Hamiltonian dy-
namical systems. In the case of a non-degenerate Poisson tensor the dual sym-
plectic formulation of the dynamic can always be introduced via the inverse of
the Poisson tensor. On the other hand, many dynamical systems admit Hamilto-
nian representation with degenerate Poisson tensor. For such tensors the notion
of dual presymplectic structures was developed [4, 1, 2].

The alternative presymplectic picture is especially interesting in the case
of Liouville integrable systems. There is well developed bi-Hamiltonian theory
of such systems, bases on Poisson pencils of the Kronecker type [5, 6], with
polynomial in pencil parameter Casimir functions and related separability the-
ory (see [3], [7] and references quoted there in). The important question is
whether it is possible to formulate an independent, alternative bi-presymplectic
(bi-inverse-Hamiltonian in particular) theory of such systems with related sep-
arability theory and how both theories are related to each other.

The following presentation developes the bi-presymplectic theory of Liou-
ville integrable systems. The whole formalism is based on the notion of d-
compatibility of presymplectic forms and d-compatibility of Poisson bivectors.

First, we give some basic information on Poisson tensors, presymplectic two-
forms, Hamiltonian and inverse Hamiltonian vector fields and dual Poisson-
presymplectic pairs. Then, the concept of d-compatibility of Poisson bivectors
and d-compatibility of closed two-forms is developed and the main properties of
bi-presymplectic chains of arbitrary co-rank are investigated. We present con-
ditions under which the bi-presymplectic chain is related to some Liouville inte-
grable system and conditions when the chain is bi-inverse-Hamiltonian. We also
present conditions under which Hamiltonian vector fields, constructed from a
given bi-presymplectic chain, constitute a related bi-Hamiltonian chain. Finally
we prove that arbitrary Stäckel system has bi-inverse-Hamiltonian formulation.

The advantage of bi-inverse-Hamiltonian representation compare to bi-Hamil-
tonian ones is that the existence of the first guarantee that related Liouville
integrable system is separable and the construction of separation coordinates
is purely algorithmic (in a generic case), while the bi-Hamiltonian representa-
tion does not guarantee the existence of quasi-bi-Hamiltonian representation
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and hence separability of related system. Moreover, the projection of the sec-
ond Poisson structure onto the symplectic foliation of the first one, in order
to construct a quasi-bi-Hamiltonian representation, is fare from being trivial
non-algorithmic procedure.

The general objects under investigation are bi-presymplectic chains of one-
forms

β
(k)
i = Ω0Y

(k)
i = Ω1Y

(k)
i−1, i = 0, 1, . . . , nk, k = 1, ...,m, (1)

where n1 + ... + nm = n, and (Ω0, Ω1) is a pair of d-compatible presymplectic
forms of rank 2n and co-rank m. Each chain starts with a kernel vector field
Y

(k)
0 of Ω0 and terminates with a kernel vector field Y

(k)
nk of Ω1. When β

(k)
i are

closed one-forms the chains are bi-inverse-Hamiltonian.
We prove that Stäckel separable systems with Hamiltonians given by sepa-

ration relations of the most general form

m∑

k=1

ϕk
i (λi, µi)H(k)(λi) = ψi(λi, µi), i = 1, . . . , n, (2)

where

H(k)(λ) =
nk∑

i=1

λnk−iH
(k)
i , n1 + · · ·+ nm = n,

ϕk
i (λi, µi), ψi(λi, µi) are arbitrary smooth functions and (λ, µ) are separation

coordinates, have bi-inverse-Hamiltonian representation (1).
We also show how to construct separation coordinates from chains (1) in a

purely algorithmic way.
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