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Abstract

It is well known that the dynamics of a Hamiltonian system depends crucially
on whether or not it possesses nonlinear resonances. In the generic case, the set
of nonlinear resonances consists of independent clusters of resonantly interacting
modes, described by a few low-dimensional dynamical systems. We formulate
and prove a new theorem on integrability which allows us to show that most
frequently met clusters are described by integrable dynamical systems. More-
over we construct explicit solutions for the so-called dynamical phases, which
are special combinations of the modes’ phases chosen according to the resonance
conditions. The results can be used directly for systems with cubic Hamiltonian.

Resonant Clusters. The simplest nonlinear resonant systems corresponding
to the 3-wave resonance conditions are, in order of simplicity, triads (which are
integrable) and small groups or clusters of connected triads which are known to
be important for various physical applications: large-scale motions in the Earth’s
atmosphere [1], laboratory experiments with gravity-capillary waves [2], etc.

The triad is considered in the standard Manley-Rowe form:

Ḃ1 = ZB∗
2B3, Ḃ2 = ZB∗

1B3, Ḃ3 = −ZB1B2, (1)

where (B1, B2, B3) are complex amplitudes of 3 resonantly interacting modes
Bj exp i(kj · x− ω(kj)t), while the corresponding resonance conditions are

ω(k1) + ω(k2)− ω(k3) = 0 , k1 + k2 − k3 = 0,

where ω(k) is the dispersion relation and k is the wavevector.

Theorem on (n−2)–integrability. Let us assume that the autonomous system

dyj

dt
(t) = ∆j(y(t)), j = 1, . . . , n

possesses a standard Liouville volume density

σ(y) :
n∑

j=1

∂

∂yj
(σ∆j) = 0,

1



and (n− 2) conservation laws (CL): H1(y), . . . , Hn−2(y), functionally indepen-
dent. Then a new CL in quadratures H(y) can be constructed, which is func-
tionally independent of the original ones, and therefore the system is integrable.

We gave a constructive proof of this theorem for the case n = 2 in [3].
The knowledge of a canonical Hamiltonian structure is not required a priori.
We applied this theorem in [3, 4] to prove integrability and also find explicit
solutions of several dynamical systems arising in resonant interactions: triads
(n = 4), kites (n = 6), and some cases of butterflies (n = 7). For simplicity we
present here results only for triads.

If regarded in the amplitude-phase representation Bj = Cj exp iθj , Sys.(1) is
equivalent to a system for the 3 real amplitudes Cj and the dynamical phase,
the phase combination ϕ = θ1 + θ2 − θ3:{

Ċ1 = ZC2C3 cos ϕ, Ċ2 = ZC1C3 cos ϕ,

Ċ3 = −ZC1C2 cos ϕ, ϕ̇ = −(C−2
1 + C−2

2 − C−2
3 )C1C2C3 sin ϕ ,

(2)

the individual phases θj being slave variables and obtainable by quadratures [5].
Integrability of dynamical system (2) is a well-known fact (e.g. [6]). Two of its
CLs (the so-called Manley-Rowe relations) are: H1 = C2

1 + C2
3 , H2 = C2

2 + C2
3 .

Sys.(2) has been used for a preliminary check of our method; in this case
n = 4. The method can thus be applied and we obtain the following CL:
H = C1C2C3 sinϕ , which turns out to be the Hamiltonian of original Sys.(1).

Explicit solution for dynamical phase. We established numerically in [4]
the strong impact of dynamical phases on the behaviour of any physical sys-
tem governed by a triad as well as small clusters of resonant triads. The an-
alytical solution depends on the three real roots of a cubic polynomial in the
so-called Casus Irreducibilis. Let ρ = H2/H1 and define α ∈ [0, π] by cosα =
(−2+3 ρ+3 ρ2−2 ρ3)H1

3−27 H2

2 (1−ρ+ρ2)
3
2 H1

3
. In terms of Jacobian elliptic functions with modu-

lus m = cos
(

α
3 + π

6

)
/ cos

(
α
3 − π

6

)
and period T =

√
2 3

1
4 K(m)

Z (1−ρ+ρ2)
1
4
√

cos( α
3−π

6 )
√

H1

,

the dynamical phase:

ϕ(t) = cot−1

(
m

H

(
2K(m)
Z T

)3

sn cn dn
(

2 K(m)
(t− t0)

T
,m

))

evolves in the domain (0, π) , where sn cn dn(u,m) ≡ sn(u, m) cn(u, m) dn(u,m) .
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