
Squared Eigenfunctions for 3 × 3 Eigenvalue

Problems

D.J. Kaupa,b

March 2, 2009

NEEDS 2009 Workshop
Nonlinear Evolution Equations and Dynamical Systems
Isola Rossa, May 16–23, 2009.

a. Mathematics Department, PO Box 161364, University of Central Florida, Or-

lando, FL 32816-1364.

b. Institute for Simulation and Training, 3100 Technology Parkway, Suite 100,

University of Central Florida, Orlando, FL 32826.

1 General remarks

Integrable equations in one dimension have Lax pairs and Lax pairs consists of
a spatial eigenvalue problem with a spectral parameter and another eigenvalue
problem which is the “spectral evolution equation”. These operators operate
on the same functions so one has a single function which has to satisfy two
independent conditions. These functions are called Jost functions. One operator
evolves the Jost function spatially and the other which evolves it in time (or
another dimension). Thus integrability conditions must be satisfied in order
for nontrivial Jost functions to exist. These integrability conditions are called
”integrable evolution equations” and they are a set of nonlinear conditions on
the evolution of the various potential-like components contained in the members
of the Lax pair.

The spatial eigenvalue problem determines what the scattering data is and
defines what the inverse scattering problem must be. Any given spatial eigen-
value problem can also have a hierarchy of spectral evolution equations with
which it could be paired as a Lax pair. For each of these pairs, one would have
a different integrable evolution equation. For any given Lax pair, it could also
have several possible reductions, wherein various components of the potentials
would be identified. On the other hand, there is always the most general spectral
eigenvalue problem where there are no reductions applied and all potential com-
ponents are taken to be uniquely different. For example, the AKNS eigenvalue
problem [1] is the most general spectral eigenvalue problem for the 2 × 2 Dirac
case, since the potential matrix has only two nonzero, nontrivial components, q
and r, each of which are taken to be unrelated. An example of a reduction for
this problem would be to take r = q.

These points are important when one considers perturbations of integrable
nonlinear evolution equations. There are two ways in which one could ap-
proach perturbations. First, one could slightly shifts the initial data of the
potentials. Second, one could add additional terms to the integrable evolution
equations, causing it to become non-integrable, although close in some sense

1



to an integrable case. In the first approach, one would want to determine how
the scattering data would shift when the initial values of the potentials were
slightly shifted. The functions which provide this mapping are called the “ad-
joint squared eigenfunctions” (ASE). The inverse of this mapping provides how
the potentials shift when the scattering data is slightly shifted. The functions
which provide this mapping are called the “squared eigenfunctions” (SE). In the
second case, one has the additional problem of determining how the additional
terms which are added to the integrable evolution equations shift the evolution
of the scattering data. Both these approaches would still use the same method-
ology for mapping between the shifts in the scattering data and the shifts in the
potentials.

Methods for obtaining the SE and the ASE are important for any perturba-
tion studies of integrable systems. The original method for obtaining these [2, 3]
was rather tedious and long. Since that time, much more has been understood
about the SE due to the efforts of Gerdjikov [4], Yang[5] and others [6]. Recent
work by Yang and myself [7, 8], along with excellent hindsight, has allowed us
to back off and take a broader view of this problem, and as a result, simplify the
problem of constructing the SE and the ASE into a set of well defined actions.
The differences from one eigenvalue problem to another would be expected to
show up only as differences in the exact mechanics as to how one executes each
action. This approach will be illustrated with the AKNS system and the 3 × 3
eigenvalue problem for the Sasa-Satsuma equation. If time allows, the general
3 × 3 eigenvalue problem, without any reductions, will be discussed.
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