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Introduction

In [3] the authors remark the relevance of the coisotropic deformations of as-
sociative commutative algebras in the context of the dispersionless hierarchies
of integrable systems. The starting point of this approach is an n-generated
polynomial algebra C [p0, . . . , pn−1] and an ideal J0 ⊂ C [p0, . . . , pn−1]. Let us
next consider a deformation An

x(p) of the algebra given by an n-generated alge-
bra of polynomials in p0, . . . , pn−1 whose coefficients depend on the parameters
x0, . . . , xn−1. In the same way let us also take a deformation J n

x (p) ⊂ An
x(p) of

the ideal J0.
The key point in the definition of coisotropic deformation is considering the el-
ements of An

x(p) as functions of a suitable Poisson space, in our cases R2n with
co-ordinates (xi, pj) and equipped with the canonical structure {xi, pj} = δij .
The algebra An

x(p)\J n
x (p) is a coisotropic deformation of C [p0, . . . , pn−1] \J0 if

{J n
x (p) , J n

x (p)} ⊂ J n
x (p). (1)

In this setup the dispersionless Kadomtsev-Petviashvilii equation is related to a
coisotropic deformation [3] of the polynomial algebra C[p1, p2, p3] with the ideal
JKP = 〈p3 − p3 − u1p − u0 , p2 − p2 − v0〉. If we introduce the deformation
ui = ui(x1, x2, x3) for i = 0, 1 and v0 = v0(x1, x2, x3), then the condition

{p3 − p1
3 − u1p1 − u0 , p2 − p1

2 − v0} ∈ JKP

gives rise to the dKP equation. Other similar 2+1D integrable systems such as
n-dKP, can be interpreted as coisotropic deformations of a polynomial algebra
quotiented by an ideal generated by algebraic curves of genus zero.

Our results

In [5] we extend this approach taking into account ideals generated by genus 1
algebraic curves. We start from C[p2, p3, p4] and the ideal J1 = 〈E , J (4)〉, where

J (4) = p4 − p2
2 − v2p3 − v1p2 − v0

1



and
E = p3

2 − p2
2 − u4p3p2 − u3p2

2 − u2p3 − u1p2 − u0

is a generic elliptic curve. We show that the coisotropy conditions

{E , J (4)} ∈ J1, (2)

applied to the algebra deformation depending on the parameters x2, x3, x4, are
equivalent to the dispersionless counterpart of the 2+1D linear flow on the first
Birkoff stratum of the Universal Sato Grassmannian (see for this system [1, 4]).
In general, we conjecture that the dispersionless counterpart of any Grassman-
nian integrable flow [7, 2] are deformed associative algebras. The complete
classification of the algebras and the related tau structure is a work in progress.
In the literature, e.g. in [6], the authors show that the dispersionless 3 compo-
nent KdV equation can be interpreted as a 1 + 1D deformation of an elliptic
curve: Such deformation is a particular reduction of the 2+1D system obtained
from (2).
The extension of all the previous results to the whole hierarchy implies the use
of an infinitely many generated associative algebra.
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