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1 The problem of integrable discretization

This talk deals with some aspects of the problem of integrable discretization, as
defined in [1]. Consider a completely integrable flow

ẋ = f(x) = {H,x}, (1)

with a Hamilton function H on a Poisson manifold P with a Poisson bracket
{·, ·}. Thus, the flow (1) possesses sufficiently many functionally independent
integrals Ik(x) in involution. The problem consists in finding a family of diffeo-
morphisms Φ : P → P,

x̃ = HΦ(x; ε), (2)

depending smoothly on a small parameter ε > 0, with the following properties:

1. The maps (2) approximate the flow (1): HΦ(x; ε) = x + εf(x) + O(ε2).

2. The maps (2) are Poisson w. r. t. the bracket {·, ·} or some its deformation
{·, ·}ε = {·, ·}+ O(ε).

3. The maps (2) are integrable, i.e. possess the necessary number of inde-
pendent integrals in involution, Ik(x; ε) = Ik(x) + O(ε).

2 Hirota-Kimura-Kahan type discretization of
quadratic vector fields

The talk will be devoted to discretizations of the type introduced in [2, 3] and
missing from the book [1], despite its encyclopedic nature. Reasons for this
omission: discretization of the Euler top [2] seemed to be an isolated curiosity;
discretization of the Lagrange top [3] seemed to be incomprehensible, if not even
wrong. It turns out that the discretizations of Hirota-Kimura are instances of
a general method for discretizing differential equations with quadratic vector
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fields, proposed by W. Kahan in [4]. It is applicable to any system of ordinary
differential equations for x : R→ Rn with a quadratic vector field

ẋ = Q(x) + Bx + c,

where Q : Rn → Rn is a quadratic function, while B ∈ Matn×n(R) and c ∈ Rn.
Kahan’s discretization reads as

x̃− x

ε
= Q(x, x̃) + B(x + x̃) + c,

where Q(x, x̃) = Q(x + x̃) − Q(x) − Q(x̃), is the symmetric bilinear function
corresponding to Q. General features of this discretization:

1. discrete equations are linear w.r.t. x̃ and define therefore an explicit (ra-
tional) map x̃ = f(x, ε);

2. this map is reversible (therefore birational): f−1(x, ε) = f(x,−ε).

Kahan illustrated his method with an application to the famous Lotka-Volterra
system, where it produces non-spiralling orbits, unlike the majority of conven-
tional integrators.

A bi-Hamiltonian structure of the Hirota-Kimura discretizations of the Euler
top was established in [5]. The Kahan’s procedure has been then used to obtain
an integrable discretization of the Clebsch system [6] and of some three bi-
Hamiltonian flows [7]. An overview of recent results will be presented.
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