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1 Spin-Torque Nano-oscillators (STNO)

The discovery of the spin-transfer torque effect by J. Slonczewski [1] and L. Berger
[2] opened a possibility for a new method of generation of microwave oscilla-
tions that does not involve any semiconductor materials or devices. It turned
out, that electric direct current passing through a magnetized magnetic lay-
ered structure becomes spin-polarized and, if the current density is sufficiently
high, this spin-polarized current can transfer enough spin angular momentum
between the magnetic layers to de-stabilize the static equilibrium orientation of
magnetization in the thinner (”free”) magnetic layer of the multi-layered struc-
ture and to start self-sustained oscillations of magnetization. Thus, using the
spin-torque effect it is possible to create a novel type of nano-sized microwave
oscillators – spin-torque nano-oscillators (STNO) [3].

Understanding of non-autonomous dynamics of STNOs subjected to exter-
nal perturbations, such as thermal noise or periodic signals, is of a critical
importance for the practical applications of STNO. In particular, thermal noise
determines the STNO generation linewidth, while the action of periodic signals
can lead to the phase-locking of STNO to an external frequency. The Landau-
Lifshitz-Gilbert-Slonczewski equation [1], which describes the STNO dynamics,
is nonlinear and can not be solved analytically in a general case. Therefore, the
STNO dynamics is, usually, studied numerically. However, numerical simula-
tions of non-autonomous STNO dynamics, especially in the case of STNOchas-
tic external signals (like thermal noise), are rather difficult and time-consuming.
Also, for every new external perturbation these calculations must be repeated
from the very beginning.

2 Forced Dynamics of STNO

In this work, we propose a perturbative analytic approach to the description
of non-autonomous STNO dynamics which is based on using the autonomous
(unperturbed) STNO dynamics, obtained either analytically or numerically, as
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a zero approximation. The role of a small parameter is played by the ratio of the
energy of the STNO interaction with an external perturbation to the energy of
the autonomous (unperturbed) STNO motion. The proposed approach is valid
for any STNO geometry and any amplitude of the autonomous STNO motion.
This approach is, also, valid for an arbitrary (but sufficiently small) external
perturbation and, in particular, for the perturbation in the form of periodic
signals coming from other STNOs forming a large STNO array.

In the developed approach, we use the fact that both non-conservative
(Gilbert’s and Slonczewski’s) terms in the Landau-Lifshitz-Gilbert-Slonczewski
equation [1] are small in comparison to the main (precessional) term, so the
unperturbed STNO motion is quasi-Hamiltonian, and the competing non-con-
servative terms simply stabilize a particular STNO trajectory that is close to
a Hamiltonian one. Thus, in the theory it is possible to introduce canonical
variables for the STNO system: action J , which is a mathematical equivalent
of the oscillation power, and the phase Ψ, which is canonically conjugated with
J . In these variables the non-autonomous dynamics of a perturbed STNO is
described by the following simple system of equations:

dJ

dt
+ Γ(J)(J − J0) = −(KJ(J) · h(t)) , (1)

dΨ
dt

− ω0(J) = (KΨ(J) · h(t)) , (2)

were J0 is the power of the autonomous (unperturbed) STNO motion, Γ(J) is
the decay rate of power perturbations in STNO, ω0(J) is the STNO oscillation
frequency dependent on the STNO oscillation power J , and KJ(J), KΨ(J) are
the vector functions describing the influence of the external perturbation h(t) on
the power J and phase Ψ of the STNO. Note, that the coefficients J0, Γ(J) and
functions ω0(J), KJ(J), KΨ(J) entering Eqs. (1) and (2) are determined from
the solution of the autonomous dynamics problem of an unperturbed STNO.

To illustrate our approach we solved a problem of phase-locking of an STNO
having a non-trivial geometry with two coupled (by both spin-torque and dipole-
dipole interaction) ferromagnetic layers to an external periodic signal h(t). In
the studied STNO geometry the spin-polarized current excites magnetization
oscillations in both coupled magnetic layers, each of which is considered in the
macrospin approximation. The spectrum of oscillations in this STNO geometry
consists of two branches with different frequencies. Using Eqs. (1) and (2) we
calculated the phase-locking effect for the low-frequency STNO branch in the
case when the precession angles in both layers were not small.

The results of the developed analytic theory are in good agreement with the
results of direct numerical simulations performed using the coupled Landau-
Lifshitz-Gilbert-Slonczewski equations [1].
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