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In this talk we would like to give a brief account of recent development of
the symmetry approach [1, 2]. The progress has been achieved mainly due to
a symbolic representation of the ring of differential polynomials which enable
us to use powerful results from algebraic geometry and number theory. Sym-
bolic representation (an abbreviated form of the Fourier transformation) has
been originally applied to the theory of integrable equations by Gel’fand and
Dikii [3]. Symmetry approach in symbolic representation has been formulated
and developed to tackle the problem of the global classification of integrable
evolutionary equations in [4, 5, 6]. In symbolic representation the existence of
infinite hierarchy of symmetries is linked with factorisation properties of an infi-
nite sequence of multi-variable polynomials. Symbolic representation is suitable
for studying integrability of noncommutative [7], non-evolutionary [8, 9, 10],
non-local (integro—differential) [11], multi-component [12, 13, 14] and multi—
dimensional equations [15]. It provides a powerful tool for testing integrability
of a given system. It enables us to obtain the intrinsic structure of the symmetry
hierarchy and global classification results of integrable systems.
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